Caramencari nilai x agar matriks singular penma 2b. Tentukan nilai determinan dari matriks ordo 3x3 berikut : . Invers matriks 3x3 rumus cepat . Pada penjelasan sebelumnya tentang determinan matriks, kamu udah tau kan bagaimana cara mencari. Misalnya matriks ordo 2 x 3 dapat dikalikan dengan matriks ordo 3 x 3.
Apa itu kofaktor ??? Secara definisi kofaktor memang sulit untuk dijelaskan. Akan tetapi menurut dari apa yang telah saya pelajari bahwa kofaktor itu adalah salah satu tahapan dalam proses pencarian nilai invers dari suatu matriks. Untuk mencari nilai kofaktor dari suatu matrik tidak bisa langsung semerta-merta mencari kofaktor, akan tetapi harus terlebih dahulu mencari minor dari suatu matriks. Maka dari itu sudah seharusnya teman-teman membaca dahulu artikel tentang mencari minor mataris pada link di bawah ini Jika teman-teman sudah membaca artikel tentang cara mencari minor matriks ordo 3x3, maka teman-teman sudah bisa melanjutkan pembelajaran tentang cara mencari kofaktor dari suatu matirks. Kofaktor dari suatu matriks itu adalah suatu keadaan dari elemen-elemen matriks yang telah diminor matrikan yang menyatakan bahwa "apakah elemen bernilai positif atau negatif pada suatu letak tertentu apabila dikofaktorkan". Untuk menentukan kofaktor matriks harus dicari dengan rumus berikut ini KEab = -1a+b x NEab Keterangan KE Kofaktor Elemen Matriks a Baris ke-a b Kolom ke-b NE Nilai elemen Minor Matriks Contoh Tentukan kofaktor dari minor matriks berikut ini Jawaban KEab = -1a+b x NEab KE11 = -11+1 x NE11 = -12 x -3 = 1 x -3 = -3 KE12 = -11+2 x NE12 = -13 x -6 = -1 x -6 = 6 KE13 = -11+3 x NE12 = -14 x -3 = 1 x -3 = -3 KE21 = -12+1 x NE21 = -13 x -6 = -1 x -6 = 6 KE22 = -12+2 x NE22 = -14 x -12 = 1 x -12 = -12 KE23 = -12+3 x NE23 = -15 x -6 = -1 x -6 = 6 KE31 = -13+1 x NE31 = -14 x -3 = 1 x -3 = -3 KE32 = -13+2 x NE32 = -15 x -6 = -1 x -6 = 6 KE33 = -13+3 x NE33 = -16 x -3 = 1 x -3 = -3 Maka kofaktornya adalah Jadi pada intinya untuk mencari kofaktor itu adalah kita harus mencari dahulu minornya tanpa terkecuali, kemudian baru teman-teman bisa mencari kofaktornya dengan rumus yang sudah saya jelaskan diatas. Gimana sangat mudah bukan untuk menentukan kofaktor dari suatu matriks ???? Saya tunggu respon atau komen dari kalian ya, jika menurut teman-taman artikel ini bermanfaat, silahkan share artikel ini ya. Sekian artikel kali ini. Mohon maaf apabila ada salah-salah kata. Akhir kata wassalamualaikum wr. wb. Referensi Pengalaman belajar penulis. Kunjungi kumpulan artikel lainnya, dengan cara klick link menu kumpulan artikel di bawah ini AkuntansiEkonomiMatematikaMs. ExcelArtikel Terbaru Share on
DeterminanMatriks berordo 3x3 dengan metode ekspansi kofaktor dan contoh soalnya.Semoga video ini bermanfaat. Jangan lupa dukung channel ini dengan cara lik
7 tahun lalu Real Time1menit Metode Sarrus hanya dapat digunakan untuk matriks 3×3. Perhitungan determinan suatu matriks dengan ukuran lebih besar sangat rumit jika menggunakan metode Sarrus. Salah satu cara menentukan determinan matriks segi adalah dengaz minor-kofaktor elemen matriks tersebut. Cara ini dijelaskan sebagai berikut Misalkan Aᵢⱼ adalah suatu matriks yang diperoleh dengan cara menghilangkan baris ke-i dan kolom ke-j dari suatu matriks Aₘₓₙ. Didefinisikan sebagai berikut Minor elemen aᵢⱼ diberi notasi Mᵢⱼ, adalah Mᵢⱼ=detAᵢⱼ. Kofaktor elemen aᵢⱼ, diberi notasi αᵢⱼ, adalah αᵢⱼ=-1ⁱ⁺ʲ. Contoh Misalkan suatu matriks A berukuran 3×3 seperti berikut ini \[\begin{pmatrix} 1 &2 &3 \\ 4 &5 &6 \\ 7 &8 &9 \end{pmatrix}\] maka diperoleh Perhitungan Determinan dengan Minor-Kofaktor Definisi Misalkan suatu matriks A = aᵢⱼₙₓₙ dan aᵢⱼ kofaktor elemen aᵢⱼ, maka Contoh 1 Hitunglah determinan matriks berikut” \[\begin{pmatrix} 3 &-2 &1 \\ 1 &3 &2 \\ 0 &-3 &1 \end{pmatrix}\] Jawab Untuk menghitung determinan dari matriks tersebut kita gunakan definisi di atas, dengan memilih baris ke-2, sehingga detA=a₂₁ α₂₁+a₂₂ α₂₂+a₂₃ α₂₃Dalam hal ini, a₂₁=1,a₂₂=3, a₂₃=2, dan Jadi, detA=1-1 + 33 + 29 = 26 Selanjutnya dengan menggunakan definisi diatas lagi, kita juga bisa dengan memilih baris/kolom lainnya, misal dipilih kolom ke-3, maka \det\mathbf{A}=a_{13}\alpha _{13}+a_{23}\alpha _{23}+a_{33}\alpha _{33}\dalam hal ini,\a_{13}=1,a_{23}=2,a_{33}=1\, dan Jadi, detA = 1-3 + 29 + 111 = 26 Apabila kita perhatikan pada hasil akhir pada penyelesaiannya, kita akan dapatkan hasil yang sama. Maka kita cukup memilih satu baris atau kolom saja untuk mengerjakan soal seperti diatas. Contoh 2 Tentukan determinan matriks A₃ₓ₃ berikut ini \[\begin{pmatrix} a_{11} &a_{12} &a_{13} \\ a_{21} &a_{22} &a_{23} \\ a_{31} &a_{32} &a_{33} \end{pmatrix}\] JawabDengan menggunakan definisi di atas, dengan memilih baris ke-1 Jadi didapatkan seperti dibawah ini Jika diperhatikan, sebenarnya rumus pada metode Sarrus diperoleh dari metode minor-kofaktor. Perhatikan bahwa tanda untuk kofaktor bergantung pada penjumlahan i dan j. Untuk memudahkan perhitungan determinan dengan menggunakan minor-kofaktor, perhatikan tabel berikut Jika dipilih baris ke-1, maka detA=a₁₁M₁₁-a₁₂M₁₂+…Jika dipilih baris ke-2, maka detA=a₂₁M₂₁-a₂₂M₂₂+… dan seterusnya. sheetmath Tentukandeterminan matriks 2x2 ini. Gunakan formula ad - bc. (2*2 - 7*4 = -24) Kalikan dengan elemen pada matriks 3x3 yang Anda pilih. -24 * 5 = -120. Putuskan untuk mengalikan hasil di atas dengan -1 atau tidak. Gunakan tabel simbol atau formula (-1) ij. Pilih elemen a 12 yang bersimbol - pada tabel simbol. Unduh PDF Unduh PDF Determinan matriks sering digunakan dalam kalkulus, aljabar linear, dan geometri pada tingkat yang lebih tinggi. Di luar dunia akademik, para insinyur dan pemrogram grafika komputer menggunakan matriks dan determinannya sepanjang waktu. [1] Jika Anda sudah tahu cara menentukan determinan matriks ordo 2x2, Anda hanya perlu belajar kapan menggunakan tambah, kurang, dan kali dalam menentukan determinan matriks ordo 3x3. Tulis matriks ordo 3 x 3 Anda. Kita akan mulai dengan matriks A ordo 3x3 dan cobalah untuk mencari determinan A. Di bawah ini adalah bentuk notasi umum matriks yang akan kita gunakan dan contoh matriks kita a11 a12 a13 1 5 3 M = a21 a22 a23 = 2 4 7 a31 a32 a33 4 6 2 1 Pilih satu baris atau kolom. Jadikan pilihan Anda sebagai baris atau kolom referensi. Apa pun yang Anda pilih, Anda akan tetap mendapat jawaban yang sama. Untuk sementara, pilih baris pertama. Kami akan memberi Anda beberapa saran untuk memilih opsi yang paling mudah dihitung di bagian berikutnya. Pilih baris pertama dari contoh matriks A. Lingkari angka 1 5 3. Di notasi umum, lingkari a11 a12 a13. 2 Coret baris dan kolom elemen pertama Anda. Lihat pada baris atau kolom yang Anda lingkari dan pilih elemen pertama. Coret baris dan kolomnya. Hanya akan tersisa 4 angka yang tidak tersentuh. Jadikan 4 angka ini sebagai matriks ordo 2 x 2. Pada contoh, baris referensi kita adalah 1 5 3. Elemen pertama berada pada baris ke-1 dan kolom ke-1. Coret seluruh baris ke-1 dan kolom ke-1. Tulis elemen yang tersisa menjadi matriks 2 x 2 1 5 3 2 4 7 4 6 2 3Tentukan determinan matriks ordo 2 x 2. Ingat, tentukan determinan matriks [ac bd] dengan cara ad - bc.[2] Anda juga mungkin pernah belajar menentukan determinan matriks dengan menggambar sebuah X di antara matriks 2 x 2. Kalikan dua angka yang terhubung dengan garis \ dari X. Lalu, kurangi dengan jumlah kali dua angka yang terhubung dengan garis /. Gunakan formula ini untuk menghitung determinan matriks 2 x 2. Pada contoh, determinan matriks [46 72] = 4*2 - 7*6 = -34. Determinan ini disebut minor dari elemen yang Anda pilih pada matriks awal.[3] Pada kasus ini, kita baru saja menemukan minor dari a11. 4 Kalikan angka yang telah ditemukan dengan elemen yang Anda pilih. Ingat, Anda telah memilih elemen dari baris atau kolom referensi ketika Anda memutuskan baris dan kolom yang akan dicoret. Kalikan elemen ini dengan determinan matriks 2 x 2 yang telah Anda temukan. Pada contoh, kita memilih a11 yang bernilai 1. Kalikan angka ini dengan -34 determinan dari matriks 2 x 2 untuk mendapatkan 1*-34 = -34. 5 Tentukan simbol dari jawaban Anda. Langkah selanjutnya adalah Anda harus mengalikan jawaban Anda dengan 1 atau-1 untuk mendapatkan kofaktor dari elemen yang Anda pilih. Simbol yang Anda gunakan tergantung dengan letak elemen pada matriks 3 x 3. Ingat, tabel simbol ini digunakan untuk menentukan pengali elemen Anda + - + - + - + - + Karena kita memilih a11 yang bertanda a +, kita akan mengalikan angka dengan +1 atau dengan kata lain, jangan diubah. Jawaban yang muncul akan sama, yaitu -34. Cara lain untuk menentukan simbol adalah dengan menggunakan formula -1i+j yang mana i dan j adalah baris dan kolom elemen. [4] 6 Ulangi proses ini untuk elemen kedua pada baris atau kolom referensi Anda. Kembalilah ke matriks awal 3 x 3 yang Anda lingkari baris atau kolomnya sebelumnya. Ulangi proses yang sama dengan elemen tersebut Coret baris dan kolom elemen tersebut. Pada kasus ini, pilih elemen a12 yang bernilai 5. Coret baris ke-1 1 5 3 dan kolom ke-2 5 4 6. Jadikan elemen yang tersisa menjadi matriks 2x2. Pada contoh kita, matriks ordo 2x2 untuk elemen kedua adalah [24 72]. Tentukan determinan matriks 2x2 ini. Gunakan formula ad - bc. 2*2 - 7*4 = -24 Kalikan dengan elemen pada matriks 3x3 yang Anda pilih. -24 * 5 = -120 Putuskan untuk mengalikan hasil di atas dengan -1 atau tidak. Gunakan tabel simbol atau formula -1ij. Pilih elemen a12 yang bersimbol – pada tabel simbol. Ganti simbol jawaban kita dengan -1*-120 = 120. 7 Ulangi proses yang sama untuk elemen ketiga. Anda memiliki satu kofaktor lagi untuk menentukan determinan. Hitung i untuk elemen ketiga di baris atau kolom referensi Anda. Berikut merupakan cara cepat menghitung kofaktor a13 pada contoh kita Coret baris ke-1 dan kolom ke-3 untuk mendapatkan [24 46]. Determinannya adalah 2*6 - 4*4 = -4. Kalikan dengan elemen a13 -4 * 3 = -12. Elemen a13 bersimbol + pada tabel simbol, sehingga jawabannya adalah -12. 8 Jumlahkan hasil ketiga hitungan Anda. Ini adalah langkah terakhir. Anda telah menghitung tiga kofaktor, satu untuk setiap elemen pada satu baris atau kolom. Jumlahkan hasil tersebut dan Anda akan menemukan determinan matriks 3 x 3. Pada contoh, determinan matriks adalah -34 + 120 + -12 = 74. Iklan 1 Pilih baris atau kolom referensi yang memiliki angka 0 paling banyak. Ingat, Anda dapat memilih baris atau kolom apa pun yang Anda mau. Apa pun yang Anda pilih, jawaban yang didapat akan sama. Jika Anda memilih baris atau kolom dengan angka 0, Anda hanya perlu menghitung kofaktor dengan elemen yang bukan angka 0 karena Sebagai contoh, pilih baris ke-2 yang memiliki elemen a21, a22, dan a23. Untuk memecahkan soal ini, kita akan menggunakan 3 matriks 2 x 2 yang berbeda, sebut saja A21, A22, and A23. Determinan matriks 3x3 adalah a21A21 - a22A22 + a23A23. Jika a22 dan a23 bernilai 0,formula yang ada akan menjadi a21A21 - 0*A22 + 0*A23 = a21A21 - 0 + 0 = a21A21. Oleh karena itu, kita hanya akan menghitung kofaktor dari satu elemen saja. 2 Gunakan baris tambahan untuk membuat soal matriks menjadi lebih mudah. Jika Anda mengambil nilai dari satu baris dan menambahkannya ke baris yang lain, determinan dari matriks tersebut tidak akan berubah. Hal ini juga berlaku sama untuk kolom. Anda dapat melakukan ini berulang kali atau mengalikannya dengan konstanta sebelum menambahkannya untuk mendapatkan angka 0 di matriks sebanyak mungkin. Hal ini dapat menghemat banyak waktu. Sebagai contoh, Anda memiliki matriks dengan 3 baris [9 -1 2] [3 1 0] [7 5 -2] Untuk menghilangkan angka 9 yang berada di posisi a11, Anda dapat mengalikan nilai di baris ke-2 dengan -3 dan menambahkan hasilnya ke baris pertama. Sekarang, baris pertama yang baru adalah [9 -1 2] + [-9 -3 0] = [0 -4 2]. Matriks yang baru memiliki baris [0 -4 2] [3 1 0] [7 5 -2]. Gunakan trik yang sama pada kolom untuk membuat a12 menjadi angka 0. 3 Gunakan cara cepat untuk matriks segitiga. Pada kasus khusus ini, determinan merupakan hasil dari elemen pada diagonal utama, dari a11 di kiri atas hingga a33 di kanan bawah matriks. Matriks ini masih merupakan matriks 3x3, tetapi matriks "segitiga" memiliki pola khusus dari angka yang bukan angka 0[5] Matriks segitiga atas Seluruh elemen yang tidak bernilai 0 berada pada atau di atas diagonal utama. Seluruh angka di bawah diagonal utama adalah angka 0. Matriks segitiga bawah Seluruh elemen yang tidak bernilai 0 berada pada atau di bawah diagonal utama. Matriks diagonal Seluruh elemen yang tidak bernilai 0 berada pada diagonal utama himpunan bagian dari jenis matriks di atas. Iklan Jika seluruh elemen pada satu baris atau kolom adalah 0, determinan matriks tersebut adalah 0. Metode ini dapat digunakan untuk seluruh ukuran matriks kuadrat. Sebagai contoh, jika Anda menggunakan metode ini untuk matriks ordo 4x4, "coretan" Anda akan menyisakan matriks ordo 3x3 yang determinannya dapat ditentukan dengan mengikuti langkah di atas. Ingat, mengerjakan hal ini dapat membuat Anda bosan! Iklan Tentang wikiHow ini Halaman ini telah diakses sebanyak kali. Apakah artikel ini membantu Anda? Nah untuk menentukan determinan matriks 3×3, kita bisa menggunakan dua cara, yaitu metode Sarrus dan Minor-Kofaktor. Lalu, gimana cara menentukan Adjoin matriks 3×3? Elo harus ingat cara menentukan kofaktor matriks a ij, yaitu C ij = (-1) i+j M ij, di mana M ij adalah minor dari matriks A ij, sedangkan C ij adalah kofaktor A atau Kof(A). Unduh PDF Unduh PDF Operasi invers biasa digunakan di aljabar untuk menyederhanakan perhitungan yang tanpanya bisa cukup sulit. Misalnya, jika ingin membagi dengan sebuah pecahan, Anda bisa mempermudah perhitungan dengan mengalikan kebalikannya. Artikel ini membahas tentang operasi invers. Karena matriks tidak bisa dibagi, Anda perlu mengalikan dengan inversnya. Menghitung invers matriks 3x3 secara manual memang cukup sulit, tetapi tetap harus dibahas. Anda juga bisa menghitung invers matriks dengan menggunakan kalkulator grafik canggih. 1 Cek determinan matriks. Pertama-tama hitung determinan matriks. Jika determinannya sama dengan 0 maka Anda berhenti di sini, karena matriks ini tidak memiliki invers. Determinan matriks M dapat disimbolkan dengan detM.[1] Untuk matriks 3x3, cari determinannya terlebih dahulu Untuk mengulang kembali cara mencari determinan sebuah matriks, lihat Menentukan Determinan Matriks 3X3. 2 Lakukan transpose pada matriks. Transpose berarti mencerminkan matriks terhadap sumbu diagonal utama, atau bisa dilakukan dengan menukar angka pada posisi i,j dan j,i. Ketika Anda melakukan proses transpose, perhatikan bahwa nilai pada diagonal utama dari kiri atas ke kanan bawah tidak berubah.[2] Anda juga bisa membuat transpose dengan menulis ulang baris pertama menjadi kolom pertama, baris tengah menjadi kolom tengah, dan baris ketiga menjadi kolom ketiga. Perhatikan angka yang diberi warna pada diagram dan lihat ke mana posisinya telah berpindah. 3 Cari determinan untuk tiap matriks minor 2x2. Setiap angka pada matriks 3x3 hasil transpose berpasangan dengan sebuah matriks "minor" 2x2. Untuk menemukan matriks minor pada tiap angka, pertama-tama tandai baris dan kolom pada angka yang Anda kerjakan. Ada lima angka yang ditandai pada matriks. Empat angka sisanya adalah matriks minor.[3] Pada contoh di atas, jika Anda ingin mencari matriks minor untuk angka pada baris kedua kolom pertama, tandai lima angka pada baris kedua dan kolom pertama. Empat angka sisanya adalah matriks minornya. Cari determinan tiap matriks minor dengan mengalikan silang diagonal-diagonalnya dan mengurangkannya, seperti pada contoh. 4 Buat matriks kofaktor. Masukkan hasil dari tahap sebelumnya ke dalam matriks kofaktor dengan memasukkan determinan setiap matriks minor pada posisi sesuai dengan matriks asal. Jadi, determinan yang dihitung dari angka pada posisi 1,1 matriks asal dimasukkan pada posisi 1,1. Anda harus membalik tanda secara selang-seling pada matriks ini, mengikuti pola "papan catur" seperti yang ditunjukkan pada contoh.[4] Ketika memberi tanda, nilai pertama pada baris pertama harus mengikuti tanda aslinya. Tanda pada nilai kedua dibalik. Tanda pada nilai ketiga seperti tanda aslinya. Lanjutkan untuk seluruh matriks mengikuti pola ini. Perhatikan bahwa tanda + dan - pada pola papan catur tidak menunjukkan apakah angka akhir harus positif atau negatif. Tanda tersebut hanya menunjukkan apakah Anda harus mempertahankan + atau membalik - tanda asal. Hasil akhir dari langkah ini disebut matriks adjugat dari matriks asal. Matriks ini juga sering disebut sebagai matriks adjoin. Matriks adjugat disimbolkan dengan AdjM. 5 Bagi tiap angka dari matriks adjugat dengan determinan. Ingat kembali nilai determinan matriks M yang telah Anda hitung pada langkah pertama untuk mengecek apakah matriks memiliki invers atau tidak. Sekarang bagi setiap angka pada matriks dengan nilai tersebut. Masukkan hasil setiap perhitungan pada posisi asalnya. Hasilnya adalah invers matriks dari matriks asal.[5] Untuk contoh matriks seperti yang ditunjukkan di diagram, determinannya adalah 1. Oleh karena itu, proses pembagian matriks adjugat akan menghasilkan matriks adjugat itu sendiri. Anda mungkin tidak akan selalu seberuntung itu. Alih-alih membagi, beberapa referensi menuliskan tahap ini sebagai perkalian setiap angka pada matriks M dengan 1/detM. Secara matematis, kedua pernyataan ini sama. Iklan 1 Gabungkan matriks identitas dengan matriks asal. Tuliskan matriks asal M, buat sebuah garis vertikal di sebelah kanannya, lalu tuliskan matriks identitas di sebelah kanannya. Sekarang Anda memiliki sebuah matriks yang tampak sebagai matriks dengan tiga baris dan enam kolom.[6] Ingat kembali bahwa matriks identitas adalah sebuah matriks khusus yang bernilai 1 pada tiap angka diagonal utama dari kiri atas ke kanan bawah, dan bernilai 0 pada semua posisi lain. 2 Lakukan operasi baris elementer. Tujuan Anda adalah membuat matriks identitas pada sisi kiri matriks yang baru dibuat. Saat melakukan operasi basis elementer pada sisi kiri, Anda harus melakukan proses yang sama pada sisi kanan, yang awalnya adalah matriks identitas.[7] Ingat bahwa operasi baris elementer adalah kombinasi dari perkalian skalar dan penjumlahan atau pengurangan baris, yang bertujuan untuk mengisolasi nilai matriks tertentu. 3Lanjutkan sampai Anda memperoleh matriks identitas. Terus ulangi operasi baris elementer sampai sisi kiri matriks baru Anda menjadi matriks identitas diagonalnya bernilai 1, dan angka lain bernilai 0. Ketika Anda sampai pada titik ini, matriks pada sisi sebelah kanan garis vertikal adalah invers dari matriks asal.[8] 4Tulis invers matriks. Seluruh angka pada sisi kanan garis vertikal adalah invers matriks.[9] Iklan 1Pilih kalkulator yang bisa menghitung matriks. Kalkulator sederhana 4-fungsi tidak bisa membantu Anda mencari invers secara langsung. Namun, beberapa kalkulator grafik canggih, seperti TI-83 atau CASIO-9860 yang bisa melakukan perhitungan berulang, dapat membantu Anda mempermudah perhitungan.[10] 2Masukkan matriks ke dalam kalkulator. Pertama-tama, masuk ke dalam fungsi Matrix di dalam kalkulator Anda dengan menekan tombol Matrix, jika ada tombolnya di kalkulator Anda. Pada kalkulator Texas Instrument, Anda perlu menekan tombol 2ndMatrix. 3Pilih submenu Edit. Untuk memasuki submenu, gunakan tombol panah atau pilih fungsi yang tepat pada tombol bagian atas kalkulator, tergantung posisi tombol pada kalkulator Anda.[11] 4Pilih nama matriks. Sebagian besar kalkulator bisa menghitung antara 3 sampai 10 matriks, yang diberi nama A sampai J. Biasanya pilih saja [A] dan teruskan perhitungan. Tekan tombol Enter setelah memasukkan pilihan.[12] 5Masukkan dimensi matriks. Artikel ini berfokus pada matriks 3x3. Namun, kalkulator dapat menangani matriks dengan ukuran lebih besar. Masukkan jumlah baris, lalu tekan Enter, dan masukkan jumlah kolom, dan tekan Enter.[13] 6 Masukkan setiap angka pada matriks. Layar kalkulator akan menunjukkan sebuah matriks. Jika Anda pernah menggunakan fungsi matriks, matriks sebelumnya akan muncul pada layar. Kursor akan berada pada posisi pertama matriks. Ketikkan angka pada matriks yang ingin Anda hitung, lalu tekan Enter. Kursor akan berpindah secara otomatis pada angka berikutnya dalam matriks, menggantikan nilai yang telah ada sebelumnya.[14] Jika Anda ingin memasukkan angka negatif, gunakan tombol negatif - pada kalkulator, bukan tanda kurang. Fungsi matriks tidak akan bisa membaca angka tersebut dengan sempurna. Jika diperlukan, gunakan tombol panah pada kalkulator untuk berpindah posisi dalam matriks. 7Keluar dari fungsi Matrix. Setelah Anda memasukkan semua angka pada matriks, tekan tombol Quit atau 2ndQuit, jika perlu. Anda akan keluar dari fungsi Matrix dan kembali pada menu utama pada kalkulator.[15] 8 Gunakan tombol invers untuk mencari invers matriks. Pertama-tama, buka fungsi Matrix dan gunakan tombol Name untuk memilih nama matriks yang Anda gunakan untuk mendefinisikan matriks Anda misalnya [A]. Lalu, tekan tombol invers pada kalkulator, . Anda mungkin perlu menekan tombol 2nd sebelumnya, tergantung jenis kalkulator Anda. Pada layar kalkulator akan tertulis . Tekan Enter, dan invers matriks akan tampak di layar kalkulator.[16] Jangan menggunakan tombol ^ pada kalkulator dan memasukkan perhitungan A^-1. Kalkulator tidak akan bisa memproses operasi ini. Jika Anda mendapatkan pesan kesalahan saat menekan tombol invers, ada kemungkinan matriks Anda tidak memiliki invers. Hitung kembali determinan untuk mengeceknya. 9 Ubah invers matriks Anda menjadi bentuk yang akurat. Pada perhitungan pertama kalkulator Anda akan memberikan hasil dalam bentuk desimal. Nilai ini bukanlah nilai yang paling "akurat". Anda bisa mengubah bentuk desimal menjadi bentuk pecahan, jika diperlukan. Jika Anda cukup beruntung, semua hasilnya adalah bilangan bulat, tetapi ini jarang sekali terjadi.[17] Kalkulator Anda mungkin memiliki fungsi untuk mengubah secara otomatis desimal menjadi pecahan. Misalnya, pada TI-86, masuk ke dalam fungsi Math, lalu pilih Misc, dan kemudian Frac, dan tekan Enter. Nilai desimal akan otomatis berubah menjadi pecahan. Iklan Anda bisa mengikuti semua langkah ini untuk mencari invers matriks yang tidak mengandung angka saja tetapi juga mengandung variabel, yaitu nilai tak tentu atau bahkan bentuk aljabar. Tuliskan semua langkah dalam proses ini karena sulit sekali menghitung invers matriks 3x3 di awang-awang. Ada program komputer yang bisa menghitung invers matriks[18] , sampai ukuran matriks 30x30. Cek apakah hasilnya akurat, dengan cara apa pun yang Anda sukai, misalnya mengalikan M dengan M-1. Pastikan bahwa M*M-1 = M-1*M = I. I adalah matriks identitas, yang bernilai 1 pada diagonal utama dan 0 pada posisi lainnya. Jika hasilnya bukan matriks identitas, Anda pasti melakukan kesalahan perhitungan. Iklan Peringatan Tidak semua matriks 3x3 memiliki invers. Jika determinan matriks adalah 0, matriks tersebut tidak memiliki invers. Perhatikan bahwa pada rumus kita perlu membagi dengan detM. Hasilnya tidak terdefinisi jika dibagi dengan nol. Iklan Tentang wikiHow ini Halaman ini telah diakses sebanyak kali. Apakah artikel ini membantu Anda?

Caramencari kofaktor matriks 3×3. Minor M K 3 1 2 5. Dari matriks A a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 dapat diperoleh kofaktor-kofaktor. View Matriks Minor Kofaktor Determinan 3x3docx from MATH 03 at Universitas Indonesia. Pin On Rpp Bil Exponent .

Artikel ini akan membahas tentang invers matriks yang termasuk dalam materi pelajaran Matematika Wajib Kelas 11. Elo tau nggak kalau sebuah angka ternyata punya nilai opposite atau kebalikan? Iya, itu yang dinamakan dengan invers. Di artikel ini gue mau ajak elo belajar tentang cara mencari invers matriks 2×2 dan 3×3 dengan rumus invers matriks. Sebelum masuk ke cara mencari invers matriks, pembahasan serta contoh soal invers matriks, elo perlu paham konsep invers dulu. Gimana sih taunya sebuah nilai punya kebalikan? Gini nih misalnya angka 2, kebalikan dari angka 2 adalah atau bisa ditulis dengan 2-1. Kebalikan dari angka 15 berarti atau 15-1. Nah, sekarang kalau angkanya adalah pecahan, nilai kebalikannya gimana? Gak usah bingung, tinggal dibalik aja. Misalnya pecahan berarti kebalikannya adalah 5 atau -1. Kita bisa menyebut kebalikan atau opposite dengan istilah invers. Lalu, apakah invers berlaku juga pada matriks? Yap, tentu saja berlaku. Di materi pelajaran Matematika Wajib kelas 11, elo udah belajar tentang matriks dan determinan matriks, iya kan? Kalau mau mengingat dan butuh review lagi, elo bisa langsung meluncur ke artikel yang udah gue tulis sebelumnya. Baca Juga Matriks Matematika Itu Apa Sih? Review sedikit, yuk! Matriks adalah susunan persegi/persegi panjang yang terdiri dari angka dan diatur dalam baris dan kolom. Masih ingat kan kalau baris itu yang susunannya horizontal kanan-kiri, sedangkan kolom yang susunannya vertikal atas-bawah seperti ini. Materi Matriks Arsip Zenius Cara Mencari Invers Matriks?Invers Matriks 2×2Invers Matriks 3×3 Nah, kita nyambung lagi ke invers matriks. Suatu matriks juga memiliki invers. Konsepnya masih sama, bahwa ketika ada matriks A, maka inversnya adalah A-1. Selain konsep tersebut, untuk mencari invers matriks juga ada konsep lainnya yang harus elo perhatikan. Ketika kita mengalikan suatu angka dengan kebalikannya, maka hasilnya akan bernilai 1. Ketika dibalik hasilnya juga akan tetap sama, yaitu 1. Hal yang sama juga berlaku pada matriks. Ketika kita mengalikan matriks dengan kebalikannya, maka kita akan mendapatkan matriks identitas yang setara dengan nilai 1. Begitu pun dengan kebalikannya. Elo masih ingat gak matriks identitas itu yang seperti apa? Yap, matriks persegi yang semua elemen diagonal utamanya bernilai satu, sedangkan elemen lainnya bernilai nol. Seperti ini ilustrasinya. Sebelum memasuki invers matriks, ada baiknya elo kenal dulu sama istilah determinan, minor-kofaktor, dan jenis-jenis matriks. Gue udah pernah nulis artikel yang membahas poin-poin tersebut di artikel gue yang ini. Baca Juga Determinan Matriks dan Metode Penyelesaiannya Invers matriks persegi ada yang memiliki ordo 2×2 dan 3×3. Dari kedua matriks persegi ini elo bisa mencari determinannya untuk bisa mencari invers matriks. Invers Matriks 2×2 Menghitung invers matriks ordo 2×2 lebih mudah dibandingkan dengan matriks yang berordo lebih tinggi seperti 3×3. Elo hanya perlu menghitungnya menggunakan rumus di bawah ini. Rumus Invers Matriks 2×2 Kalau elo bertanya, Adj A itu apa sih? Jadi, Adj A adalah adjoin matriks A, berarti transpose dari matriks A yang elemen-elemennya merupakan kofaktor dari elemen-elemen matriks A. Untuk mengetahui kofaktor itu yang gimana, elo bisa baca lagi artikel gue sebelumnya tentang Determinan Matriks. Contohnya gini, ada suatu matriks . Elo diminta untuk mencari invers dari matriks A tersebut. Elo bisa masukan matriks A ini ke dalam rumus di atas, seperti ini A ini lambang apa sih? Ini determinan matriks ya. Jadi elo tinggal menggali silangkan elemen-elemen secara diagonal untuk tau determinannya. Makanya, di rumus didapatkan ad – bc ya. Huruf-huruf itu tinggal elo ganti ke angka nanti di contoh soal invers matriks 2×2. Nah, jadi untuk mendapatkan adjoin dari matriks A yang ordonya 2×2, elo hanya perlu menukar posisi a dan d, kemudian letakkan nilai negatif di depan b dan c. Contoh Soal Invers Matriks Ordo 2×2 dan Jawabannya Untuk mempermudah, kita langsung cemplungin angka-angkanya ke dalem, yuk! Perhatikan contoh soal di bawah ini! Dari soal di atas udah diketahui tuh determinannya. Selanjutnya, kita hitung invers dari matriks P-nya atau P-1. Nah, sekarang elo udah menemukan invers dari matriks P. Untuk membuktikan apakah hasil tersebut benar, elo bisa pakai konsep yang pertama gue tulis di atas bahwa AxA-1= I matriks identitas. Langsung aja deh kita buktikan. Untuk membuktikan persamaan selanjutnya, coba deh elo hitung apakah A-1A=I juga? Dari hasil perhitungan di atas, elo udah paham mulai dari konsep, cara mencari invers matriks 2×2, hingga membuktikan bahwa hasil tersebut sudah benar. Invers Matriks 3×3 Sekarang kita masuk ke invers matriks ordo 3×3, gimana sih cara perhitungannya? Apakah sama dengan matriks berordo 2×2? Sebenarnya, untuk menentukan invers dari matriks berordo 3×3 itu bisa dilakukan dengan beberapa cara, ada yang menggunakan metode Eliminasi Gauss-Jordan atau transformasi baris elementer dan menggunakan adjoin. Kali ini, gue bakal membahas perhitungan invers dengan Adjoin sama seperti matriks berordo 2×2. Apakah cara perhitungannya sama? Oke, langsung aja kita bahas deh biar tau caranya sama atau berbeda. Secara umum, rumus invers matriks adalah . Jadi rumus invers matriks 3×3 tetap menggunakan rumus umum tersebut ya. Nah, untuk menentukan determinan matriks 3×3, kita bisa menggunakan dua cara, yaitu metode Sarrus dan Minor-Kofaktor. Lalu, gimana cara menentukan Adjoin matriks 3×3? Elo harus ingat cara menentukan kofaktor matriks aij, yaitu Cij = -1i+jMij, di mana Mij adalah minor dari matriks Aij, sedangkan Cij adalah kofaktor A atau KofA. Berarti, C11 = -11+1M11=M11 , C12= -11+2M12= –M12 , dst sampai dihasilkan seperti ini. Selanjutnya kita cari determinannya, dengan cara Mij = detAij. Misalnya kita ambil contoh M11 = detA11 = menghilangkan elemen baris ke-1 dan kolom ke-1, sehingga hanya diperoleh ordo 2×2 untuk setiap elemennya, dst sehingga diperoleh seperti ini. Balik lagi, tujuan kita adalah untuk mencari Adjoin matriks A. Apa sih hubungannya dengan kofaktor? Kenapa kita perlu mencari kofaktor terlebih dahulu? Ternyata, hubungannya adalah Adjoin matriks A sama dengan transpose dari matriks A atau disimbolkan seperti ini AdjA = KofAt. Masih ingat kan transpose itu apa? Yap, elemen-elemen pada baris diganti jadi kolom, dan elemen kolom diganti jadi baris. Contoh Soal Invers Matriks 3×3 dan Jawabannya Supaya gak makin bingung, kita langsung cemplungin ke dalam angka-angka ya. Coba perhatikan kutipan video materi dari Zenius yang membahas Contoh Soal Tentang Invers Matriks 3×3 dengan Adjoin di bawah ini. Video Materi Premium Zenius tentang Contoh Soal Invers dari Matriks 3×3 dengan Adjoin Nah, dari situ, kita lanjut tentukan transpose dari KofA untuk menentukan AdjA. Sekarang kita masukkan rumusnya Gimana, lebih gampang setelah dimasukkan angka-angkanya kan? Dari penjelasan di atas tentang invers dari matriks 3×3, elo udah tau nih metode apa aja yang bisa elo gunakan, cara menentukan determinan dan Adjoin, dan cara perhitungan invers matriks berordo 3×3. Materi ini mungkin masuk dalam TPS Tes Potensi Skolastik dalam UTBK, lho. Makanya gak ada salahnya untuk benar-benar paham tentang materi invers matriks yang satu ini. Biar makin paham elo bisa cek materi belajar di banner bawah ini dengan penjelasan dan latihan soal yang lebih banyak lagi. Jangan lupa login atau daftar dulu biar punya akun Zenius. Abis itu tinggal elo ketik topik materi yang mau dipelajari di kolom pencarian. Klik banner di atas! Oke, sampai sini dulu deh penjelasan mengenai invers matriks. Semoga apa yang udah gue sampaikan di atas bisa memudahkan proses belajar dan mengerjakan tugas. Kalau elo masih bingung, langsung bilang di kolom komentar bagian mana yang masih elo kurang paham ya! O ya, gue juga mau rekomendasiin paket belajar dari Zenius buat elo yang duduk di kelas 10, 11, dan 12 SMA. Melalui paket ini elo bisa akses ke ribuan video materi belajar, latihan soal, tryout, dan sesi live class buat bantu ningkatin nilai rapor elo. Cek info selengkapnya dengan klik banner di bawah ya! Baca Juga Artikel Lainnya Induksi Matematika untuk Membuktikan Rumus Materi Matematika SMP Persamaan dan Pertidaksamaan Linear Satu Variabel PLSV dan PTLSV Yuk, Kenalan sama Barisan dan Deret Aritmetika! Originally published September 28, 2021 Updated by Silvia Dwi & Arieni Mayesha Karenakegunaannya yang luar biasa ini, hari ini kita akan membahas cara menentukan determinan matriks dengan berbagai cara, mulai dari determinan matriks 2x2, 3x3 dengan aturan Sarrus, 3x3 metode minor kofaktor, hingga rumus invers matriks. Dan tentu saja kita juga akan mempelajari contoh soal serta pembahasannya di akhir artikel. Pada artikel terdahulu, kita sudah membahas tentang mencari minor suatu matriks. Bagi teman – teman yang masih belum memahami tentang minor suatu matriks, bisa di baca lagi artikel saya yang lalu tentang pengertian minor suatu matriks. Penguasaan materi minor mutlak diperlukan, karena kita hanya bisa mengerti tentang kofaktor dan adjoin jika kita sudah mengerti tentang minor suatu matriks. Baiklah kita langsung saja ke pokok bahasannya. Yang pertama kita bahas tentang kofaktor suatu matriks. Kofaktor suatu matriks dirumuskan sebagai -1 pangkat baris ditambah kolom elemen minor dari matriks bersangkutan. Secara matematis dirumuskan sebagai $latex K_{ij}=-1^{i+j}.M_{ij}$ Keterangan $latex K_{ij}$ maksudnya kofaktor dari suatu matriks baris ke – i dan kolom ke – j. i menyatakan baris j menyatakan kolom. $latex M_{ij}$ merupakan minor baris ke – i kolom ke – j dari suatu matriks. Contoh Tentukanlah kofaktor dari matriks $latex A=\begin{bmatrix}2&4\\3&5\end{bmatrix}$ Jawab Terlebih dulu kita cari minor dari matriks A tersebut. Disini minor dari matriks A di dapat $latex M_{A}=\begin{bmatrix}5&3\\4&2\end{bmatrix}$ Kemudian kita cari kofaktor tiap elemen dari minor tersebut Kofaktor Matriks A baris pertama kolom pertama, berarti i = 1 dan j = 1. $latex K_{11}=-1^{i+j}. M_{ij}$ $latex K_{11}=-1^{1+1}. M_{11}$ $latex K_{11}=-1^{2}.5$ $latex K_{11}= Kofaktor matriks A baris pertama kolom kedua, berarti i = 1 dan j = 2. $latex K_{12}=-1^{1+2}.M_{12}$ $latex K_{12}=-1^{3}.M_{12}$ $latex K_{12}=-1.3=-3$ Kofaktor matriks A baris kedua kolom pertama, berarti i = 2 dan j = 1 $latex K_{21}=-1^{2+1}.M_{21}$ $latex K_{21}=-1^{3}.4$ $latex K_{21}=-4$ Kofaktor matriks A baris kedua kolom kedua, berarti i = 2 dan j = 2 $latex K_{22}=-1^{2+2}.M_{22}$ $latex K_{22}= Jadi, kofaktor dari matriks A adalah $latex K_{A}=\begin{bmatrix}5&-3\\-4&2\end{bmatrix}$ Sekarang bagaimana dengan Adjoinnya?. Kita langsung saja ya cari adjoin matriks A di atas. Tetapi terlebih dulu kita bahas secara singkat apa sih yang dimaksud dengan adjoin?. Adjoin merupakan transfus dari kofaktor matriks A. secara matematis dirumuskan sebagai $latex Adj A=K_{A}^{T}$ Dimana $latex K_{A}^{T}$ = Transfus kofaktor dari matriks A Adj A = adjoin matriks A jadi rinciannya seperti ini. Jika kita mau mencari adjoin sebuah matriks, maka terlebih dulu kita cari minornya dulu, setelah itu dari minor ini kita akan mendapatkan matriks kofaktor. Kemudian kofaktor ini kita transfuskan itulah adjoin sebuah matriks. Gampang ya. Oh ya, dalam kalimat di tadi ada kata transfus, apa sih yang dimaksud dengan matriks transfuse?. Matriks transfus maksudnya matriks yang urutan baris diubah menjadi kolom dan kolom menjadi baris. Dari soal di atas , maka kita bisa menentukan adjoinnya adalah sebagai berikut $latex Adj A =K_{A}^{T}$ $latex Adj A=\begin{bmatrix}5&-4\\-3&2\end{bmatrix}$ Sekarang bagaimana kalau matriksnya berordo 3 x 3?. Kita perhatikan contoh di bawah ini ! Contoh Tentukanlah Kofaktor dan Adjoin dari matriks berikut $latex A=\begin{bmatrix}2&4&6\\1&3&2\\0&1&2\end{bmatrix}$ Penyelesaian Terlebih dahulu kita cari minor matriks A, disini didapat bahwa minor matriks A adalah $latex A=\begin{bmatrix}4&0&1\\2&4&2\\10&-2&2\end{bmatrix}$ Sehingga kofaktor matriks A adalah $latex A=\begin{bmatrix}4&0&1\\-2&4&-2\\10&2&2\end{bmatrix}$ Adjoin matriks A dicari dengan mencari transfus dari kofaktor matriks A, sehingga $latex Adj A=\begin{bmatrix}4&2&10\\0&4&-2\\1&2&2\end{bmatrix}$ Demikianlah uraian materi tentang kofaktor dan adjoin suatu matriks. Semoga bermanfaat. skH0g. 183 114 185 232 54 375 241 313 440

cara mencari kofaktor matriks 3x3